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Recently a mathematical model was proposed (Sutera, Maeder & Kestin 1963) to 
demonstrate that vorticity amplification by stretching was an important 
mechanism underlying the sensitivity of stagnation-point heat transfer on 
cylinders to free-stream turbulence. According to the model, vorticity of a scale 
larger than a certain neutral scale and appropriately oriented can undergo 
amplification as it is convected towards the boundary layer. Such vorticity, 
present in the oncoming flow with small intensity, can reach the boundary layer 
with a greatly magnified intensity and induce substantial three-dimensional 
effects therein. The mean temperature profile was shown to be much more 
responsive to these effects than the mean velocity profile and very large increases 
in the wall-heat-transfer rate were calculated for Prandtl numbers 0.74 and 7.0. 

In  this work a second, more general, case is treated in which the approaching 
flow carries vorticity of scale 1-5 times the neutral. By means of iterative pro- 
cedures applied on an electronic analogue computer, an approximate solution to 
the full Navier-Stokes equation is generated. The heat-transfer problem is solved 
simultaneously for Pr = 0.70, 7.0 and 100. It is found that a vorticity input 
which increases the wall-shear rate by less than 3 yo is capable of increasing the 
wall-heat-transfer rate by as much as 40%. The sensitivity of the thermal 
boundary layer depends on Prandtl number. In  the three cases investigated it is 
greatest for Pr = 7.0 and least for Pr = 100. 

1. Introduction 
The strong sensitivity of stagnation-point heat transfer on cylinders to the 

presence of turbulence in the free stream is well known and has been clearly 
demonstrated by experiments. Most theoretical investigations into the reasons 
for this sensitivity have considered the time dependence of the free-stream 
fluctuations as the essential feature to introduce into the boundary-layer analysis. 
The resulting analyses of laminar boundary layers with time-dependent, two- 
dimensional external flows have, however, failed to predict changes in the mean 
heat-transfer rates of anything like the large magnitudes measured in the 
laboratory (see, for example, Kestin, Maeder & Wang 1961). 

In  a recent paper Sutera et al. (1963) proposed that vorticity amplification due 
to stretching of vortex filaments in the diverging stagnation-point flow might be 
the essential underlying mechanism. A mathematical model was formulated, 
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and calculations based on i t  did reveal a significant difference in the respective 
sensitivities of the momentum and energy boundary layers to the presence of 
distributed vorticity in the flow approaching the stagnation point. A certain 
amount of distributed vorticity in the oncoming flow, capable of increasing the 
mean shear rate at the wall by only 5 yo, caused the mean heat-transfer rate to 
rise by 26 % in a fluid with Prandtl number 0.74. 

This theory also predicted that the scale of the vorticity being convected into 
the stagnation-point flow is an important factor in determining whether the 
vorticity will be amplified or not. A certain neutral scale was discovered for 
which amplification by stretching would be exactly balanced by viscous dissipa- 
tion with the result that neutral-scale vorticity would approach the boundary 
layer with unvarying intensity. Vorticity of larger scale would experience net 
amplification while smaller-scale vorticity would be attenuated. The calculation 
described in the paper dealt, in fact, with the special case of the neutral scale. 
The history of this subject is extensively, although not exhaustively, discussed 
in the paper by Sutera et al. and need not be repeated here. There was, however, 
one note by Kuethe, Willmarth & Crocker (1959) which escaped mention in that 
discussion and which is particularly relevant since it contains experimental 
results in apparent accord with the main predictions of the vorticity-amplification 
theory. In  the note, there are reported hot-wire measurements of velocity 
fluctuations near the noses of blunt bodies of revolution. The authors found that 
over a wide range of subsonic speeds the r.m.8. values of the fluctuations were 
considerably higher than those in the free stream and that most of the turbulent 
energy was in the frequency range 0-5 CIS. With the hot wire placed between 5 
and 10 boundary-layer thicknesses from the surface, amplification ratios as high 
as 3 were measured for the u'IU, fluctuation. It was further concluded that the 
preferential amplification of the low-frequency components in the free-stream 
fluctuations, usually attributed to vorticity fluctuations, indicated a mechanism 
causing amplification of vorticity fluctuations in the flow near the stagnation 
point. The stretching of vortex filaments was named as a possible cause. 

Another question raised by the aforementioned results of Sutera et al. con- 
cerned the influence of Prandtlnumber on the sensitivity of the thermal boundary 
layer. Preliminary computations revealed that the effected increase in heat- 
transfer rate was substantially greater in a fluid with Prandtl number 7.0 than 
it was when Pr = 0.74. This finding was somewhat perplexing because i t  was 
expected that in the higher Prandtl-number fluid,in which the thermal boundary 
layer is thinner, the sensitivity to disturbances coming from without would be 
less. 

It is the objective of the present paper to report the results of calculations 
pertaining to another more general application of the vorticity-amplification 
theory. In  the following, a stagnation-point flow will be considered which, far 
from the boundary, contains distributed, unidirectional vorticity of a scale 
1.5 times the neutral. It will be shown how this vorticity, given the appropriate 
orientation, is amplified as it approaches the boundary layer and induces signi- 
cant three-dimensional effects within the boundary layer. As a consequence the 
mean heat transfer may be substantially augmented. It is further shown that 
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with increasing Prandtl number the effect on heat transfer eventually diminishes 
but not monotonously. The effect is indeed larger in the case Pr = 7.0 than in the 
case Pr = 0.70 but smaller in the case Pr = 100 than in the latter. 

2. Mathematical model 
For a detailed development of the mathematical model the reader is referred 

to the original paper. In  this section the physical process underlying the model 
will be re-emphasized, and only aspects of the mathematical development which 
are essential to the coherence of this paper will be given. 

FIGURE 1. Sketch showing mode of vorticity addition. 

Figure 1 shows the physical situation to be represented by the mathematical 
model: the steady flow of a viscous, incompressible fluid having constant pro- 
perties into a plane stagnation-point. The problem is identical to  that considered 
and first solved by Hiemenz (191 1) except for the addition of distributed vorticity 
to the flow far from the boundary. The way in which this vorticity is added is 
portrayed in the figure. A simple sinusoidal variation is superimposed on the 
normal or y-component of velocity such that the associated vortex lines are 
parallel to the x-axis. This is the only one of the three components of a generally 
oriented vorticity which is susceptible to stretching in the stagnation-point 
flow. Under the simplifying restrictions of complete time independence, incom- 
pressibility, constant fluid properties and negligible viscous dissipation, the 
equations of vorticity and energy transport are then solved to determine the 
effect of the added vorticity on conditions near the boundary. 

For convenience the problem is phrased in terms of dimensionless variables. 
Let the dimensional dependent variables be denoted by an asterisk superscript. 
Then the dimensionless variables are defined as follows : 

(a )  the co-ordinates 
t, 7 , 6  = (ah)* z, (a/+ y, (./4* 2; 

33-2 
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c E (av)-*c*; 

o = o*/a; 

(b )  the velocity vector 

(c) the rotation vector (=  &(V x c)) 

(d) the temperature function 

T = (Tw-T*)/(Tw-Tm). 

In  these definitions the subscripts w and co denote conditions at  the wall and very 
far from the wall (q-+oo), respectively, v is the kinematic viscosity, and a is a 
constant of the stagnation flow having the dimension of reciprocal time. The 
constant a occurs naturally in the two-dimensional stagnation point flow through 
the conditions on the tangential and normal velocity components (x and y or 
5 and 7 components) at the edge of the boundary layer, viz. 

u* +ax, v* 3 - ay + const. 

as 7 -+ co. In  terms of the unbounded flow of an inviscid, incompressible fluid 
past a circular cylinder of diameter D, a = 4VJ0, where V, is the velocity of the 
uniform stream infinitely far from the cylinder. 

The differential equations taken as governing the velocity and temperature 
boundary layers are the time-independent vorticity-transport equation, the 
incompressible continuity equation and the time-independent energy-transport 
equation with no dissipation. In  terms of the dimensionless variables listed 
above these are (c.V)w = ( O . V ) C + V 2 O ,  ( la)  

(1 a) 
v.c = 0, (2) 

(c.V)T = (1/Pr)V2T. (3) 

c(5,0, 6) = 0, (4) 

v 5 0 , 6 )  = 0, ( 5 )  
u+ 5, avia7-t -1, W +  o (6a, b, 4 

and T + l  as 7 + m .  (7) 

0 = g(v x c), 

They are subject to the boundary conditions: 

2.1. Similarity hypothesis 

Solutions are sought which have the same underlying similarity as the Hiemenz 
flow but which are three dimensional. Thus the following similar forms are 

introduced: = W7,6)'q 
v = V(7 ,6 ) ,  

w = W(7,6) ,  
T = T(7, 6). 

The three components of vorticity in such a field are 

2 u  .i = W, - V, = 2!2(7, 6), 
2 0 .  j = U$, 
20.k=-U7C. 
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where i, j and k are the usual unit vectors parallel to the 5, 7 and 6 axes, re- 
spectively, and the subscripts denote differentiations. 

It should be noted that the k component of vorticity is present in the classical 
Hiemenz problem. The other two components, however, are peculiar to this 
three-dimensional problem and of these only the i component is susceptible to 
stretching. Consequently attention will be focused on this one in what is to 
follow. 

2.2. Xpecijification of Fourier ~ € r ~ c € u r ~  

As mentioned earlier, the addition of vorticity is to be accomplished by super- 
imposing a simple sinusoidal variation on the normal or 7 velocity component 
far from the boundary. This is to say that as 7 -+ co 

V(7, 5) -+ V,(7) + K(7) cos k5. (12) 

Since the possibility of amplification of initially small deviations from the 
classical Hiemenz flow is of interest here, it will eventually be stipulated that 
V,/V, be small at large values of 7. According to the Hiemenz solution, V, is a 
function which increases linearly with 7 as 7 -+ 00; thus the stipulation will be 
obeyed by functions V,(q) which are bounded as 7 -+ co. This particular point is 
important to the discussion which ensues and it will be expanded considerably 
later on. 

The asymptotic behaviour specified above for the function V coupled with the 
condition that there be no net flow in the x (or 6) direction leads rather naturally 
to the following assumed forms for the functions U, V ,  W and T: 

It follows from these and the definition (9) that 

m 

n = l  
Q = A C wn(7) sink, 5, 

where 2 ~ ,  = [k,lw; + k, vJ. t17b) 

(Here and hereafter the prime notation will always signify differentiation with 
respect to the variable 7.) 

The factor A will be called the amplitude parameter. It may be regarded as 
a normalizing device which allows the various summations to be considered as 
functions of order unity, but it also injects a certain flexibility into the problem 
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which is of great use when solving by analogue computer. Once the solutions are 
presented, however, it will be possible to assign a more physical meaning to A .  

The k, are dimensionless wave-numbers associated with the harmonic com- 
ponents of the periodically distributed vorticity. They are positive numbers, not 
necessarily integers, but k, = nk,  for all n > 1. With each wave-number there is 
associated a wavelength A, = 2n/kn. The longest, or fundamental, wavelength is 
that associated with the first harmonic component, viz. A, = 2n-/k,, and, as will 
be explained below, is a specified quantity. In  analogy with a true turbulent flow 
the various wavelengths may be thought of as measures of eddy sizes and A,, 
therefore, as a measure of the largest eddy present. 

Although the vorticity to be added to the flow far from the boundary will 
consist of a single harmonic component, of specified scale, it  should be clear 
that the infinite spectra provided in equations (13) to (17) are necessary because 
the governing differential equations are basically non-linear. Excitation of a non- 
linear system by a single harmonic form will generally result in a distorted 
response containing both sub- and ultra-harmonic components. For this reason 
it should be expected that the equation governing any one of the components 
u,, on, etc., will be coupled to all other components. 

The statement that the largest eddy has a finite scale or, what is equivalent, 
that the smallest wave-number k, is not zero implies that generation of sub- 
harmonics does not occur. The fact is that in its present form the mathematical 
model does not provide for this possibility. Consequently, if a simple harmonic 
distribution of vorticity is imposed on the approaching stagnation flow the non- 
linear mechanisms which then act on this vorticity can generate only ultra- 
harmonic components. For this reason the wave-number specified for the added 
vorticity will necessarily be the smallest, vie. k,. This feature of the model may 
at first appear unrealistic; but, if one recalls that observations of true turbulence 
indicate that, with few exceptions, energy transfer through the turbulent 
spectrum progresses from large scale to small scale, or that large eddies always 
break up into smaller ones and not vice versa, then there is a basis for it. 

2.3. Resulting system of ordinary differential equations 

Substitution of the velocity components as expressed by the equations (81, (131, 
(14) and (15) into the continuity equation ( 2 )  gives 

and 

uo+ v; = 0, 

u,+v;+w, = 0. 

The first of these indicates that it is possible to introduce a single function to 
represent both U, and V,. Thus let 

whence 

Substitution of these same expressions plus (16) into the differential equa- 
tions ( l a )  and (3) and the definition ( l b )  then leads, after some manipulation, 
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to the following set of ordinary differential equations governing the functions 
$, T, un, vn, w n  and 3,: 

m 

$/’I + $4“ + 4 ‘ 2  + 1 = A2 c {?A: + *(U( VJ}, (22 )  
i= 1 
QI 

T,” + Pr $T;, = +A2 Pr {ui Oi + (vi OJ}, 
i=l 

(23)  

m 

i=l 
u: + $uL - (2$‘ + k:) U, - $“v, = *A {2ui(z~i+, + ui-, + ~ , - i )  

+ [vi(ui+n.+ui-n +un-i)]’-(n/i) ~ i ( u i + ~ - u i - , - ~ , - J } ,  (24)  

-V;+k;v,& = 2k,Wn+U;, (25)  

w; + (Qwn)’ - k: w, = +A C {[wi(V,+i + vn-i - v;-,)]’ - (n/i) wi(wn+i + wi-n - ~,j)>, 

(26)  

00 

i=l 

m 

0: + Pr $6; - k; 0, - Pr T;, V ,  = +A Pr C {[vi(O,+i + Oi-, + On-JIf  
i=l 

+ u ~ ( O , + ~  + Oi-, + On-$) - (n/i) W,(O,+~ - Oi-, - (27)  

In  the summations i is a dummy index and quantities having subscripts such as 
n-i or i -n  are to be replaced by zero whenever their subscripts are zero or 
negative. 

Note that equations (22 )  and (23 )  are single equations whereas each of 
the equations (19) and (24 )  to (27 )  represents an infinite set since 1 Q n < m. 
Thus there are two plus a quintuple infinity of differential equations €or the 
same number of unknowns so that the problem is determinate. The equations 
are all ordinary and, except for (22 ) ,  linear. They are also coupled and, in principle, 
must be solved simultaneously. 

2.4. Boundary conditions 
The problem is essentially a two-point boundary-value problem and the boundary 
conditions are expressed by equations ( 4 )  to ( 7 ) .  Substitution of the assumed 
forms into ( 4 )  and (5) yields 

$ = Qf = 0, 

To = 0, 

and U, = V ,  = W ,  = 8, = 0 at 7 = 0. 

An additional condition due to the continuity relation (19) is 

V A ( 0 )  = 0. (29)  

The boundary conditions ( 6 )  and ( 7 )  then require that 

and T,+ 1, e,L-t o as 7 +  00. 

Q ’ + l ,  u,+o, v;+o, 

Furthermore, this last set of conditions is taken to imply that all derivatives of 
these functions higher than those occurring in (30) vanish as 7 + 00. 
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3. The role of vorticity scale in the amplification process 
The role of vorticity scale and the related concept of a neutral scale were 

discussed in the original paper by Sutera et al. That discussion leaned heavily 
on the matter of the asymptotic solution to equation (26 )  but was not entirely 
complete in this regard. Since this is a fundamental point in the theory it is 
definitely worthy of further attention and in this section an attempt will be made 
to redevelop the subject in a more thorough manner. 

Equation ( 2 6 )  governs the behaviour of the individual harmonic components 
of that particular vector component of the vorticity (actually one-half the 
vorticity) which is susceptible to stretching. The right member of this equation 
represents the generating effect of interactions among the various harmonic 
components. It was stated in $2.2 that a simple sinusoidal variation, charac- 
terized therefore by a unique wave-number k,, would be superimposed on the 
flow field far from the boundary. As the vorticity associated with this ‘ripple’ is 
convected towards the boundary (7 = 0) its intensity will change and eventually 
higher harmonics will be generated and the sinusoidal wave-form will distort. 
Beyond some sufficiently large value of 7, however, this generation of higher 
harmonics will be so small that the effect of spectral interactions on the evolution 
of the initial wave-form can be neglected. When this is true, the corresponding w1 
is effectively governed by the following asymptotic version of equation (26 )  

w;+$w;+($ ’ -k ; )u ,  = 0. ( 3 1 4  
To be perfectly consistent account should be taken of the fact that 

q 5 - + ~ - A  and $ ’ + l  as q-+co, 

where A is a constant related to the displacement thickness of the Hiemenz 
boundary layer. Neglecting A next to large 7, one then obtains 

as the appropriate asymptotic equation. 
This last equation has been extensively studied, and Mangler (1943) discusses 

its two linearly independent solutions, wla and wlb say. As the essential initial 
values and slopes for each of the solutions Mangler gives 

w;+qu;+(l-kq)w, = 0 (31b) 

and Olb(0) = 0, &(O) = 1. 

The corresponding solutions to the equation (31 a),  which is equivalent to (31 b) 
for sufficiently large 7, were obtained on an analogue computer, and, for the 
same initial values, the initial slopes are only slightly different from those given 
above. 

The behaviour of these solutions at large 7 is also given 

(1 - k;) ( 2  - it;) 
2v2 

+ ...I. 
(32) 

(33) 
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It is seen that the first solution approaches zero for all k, in the interval 0 < k < co. 
Furthermore, it vanishes quite rapidly; analogue computer studies of this solution 
reveal that, for k, = 0, wla is virtually zero for 7 > 4. As kl is increased, the 
approach to zero becomes more rapid. 

On the other hand the second solution is a decreasing function at large 7 only 
if k, < 1 , and even then it vanishes relatively slowly. The most rapid approach 
to zero occurs when k, = 0, and the solution behaves as 7-l. In  the limiting case 
k, = 1 the ‘tail ’ becomes infinitely long. When k, > 1, wlb increases monotonously 
without limit. The point is then that the asymptotic behaviour of the initial, 
solitary, vorticity component is essentially dominated by the second solution, 
wlb. Thus, if k, > 1, w1 will not be amplified but will steadily decay from its initial 
magnitude (which would be prescribed a t  some large value of 7) as it is trans- 
ported towards the boundary layer. If k, < 1, the vorticity will grow in intensity 
as it is swept in from large to small 7 values. This is the case of interest here. The 
case k, = 1, which was treated in the previous paper, is a special one and has been 
named neutral. The neutral-scale vorticity is convected towards the wall, far 
from the wall, with no net amplification or attenuation and this indicates a 
perfect balance between the stretching effect and viscous dissipation. 

The dimensionless neutral wavelength or scale is A, = 277. It happens to be 
roughly 10 times the displacement thickness of the classical Hiemenz boundary 
layer. Thus k, 2 1 means A A,. I t  is  only the vorticity of larger than neutral scale 
which can be amplijied in the stagnation-point $ow. The smaller-than-neutral-scale 
vorticity, if present in the approaching flow with a low intensity as is stipulated 
here, will only grow weaker as it moves towards the boundary layer and arrive 
there as a truly insignificant perturbation. 

4. A numerical example 
The particular case k, = $, corresponding to A, = 1-5A0, has been solved on an 

electronic analogue computer. Solutions were achieved by iteration and, except 
for errors due to truncation of the iteration process and, of course, to the limited 
accuracy of the computer, they are exact solutions to the problem posed. In  
addition to the velocity boundary layer, the temperature boundary layers 
corresponding to Prandtl numbers 0-70,7.0 and 100 were treated simultaneously. 
In  this section, these computations will be described and the results presented. 

The iteration process is begun by assuming that in certain equations the 
spectral-interaction functions are small enough to be neglected. The solutions 
so obtained then permit approximate solution for the first- and second-harmonic 
components of the added vorticity and velocity, and, with these, first approxima- 
tions to the previously neglected interaction functions may be constructed. The 
free parameter A plays an essential role in these steps; but, for the range of A con- 
sidered here, the second-harmonic quantities are at least an order of magnitude 
smaller than their first-harmonic counterparts. As a consequence, the rapid tailing 
off of the Fourier elements continues so that, for practical purposes, harmonics 
higher than the second may be ignored completely. 

The results of the calculation are relative in that they expose the relative 
sensitivities of the momentum and thermal boundary layers to the same vorticity 
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input. Through the parameter A the initial amplitude of the imposed vorticity 
distribution is adjusted so that the change in the mean velocity boundary layer, 
characterized by the function d, is small. In  this context ‘mean’ signifies an 
average over the c- or z-co-ordinate. It will be seen that the concomitant changes 
in the three thermal boundary layers, characterized by To, are significantly 
larger. 

rl 

FIGURE 2. First approximation to the function $, the Hiemenz solution. 

The calculation begins with a first approximation to the function 4, denoted by 
&, obtained by solving the homogeneous version of equation (22) 

#$ + h 4% - $i$ + 1 = 0, (34) 

with the boundary conditions 

d(d0) = 4;1m = 0 7  

1 as 7 +co. (35) 

Such a solution describes the mean boundary layer when the distorting influence 
of the added vorticity is negligible, and the function g5(u is precisely the classical 
Hiemenz function. It is displayed in figure 2 as it was obtained from the com- 
puter. As a measure of the accuracy of the computation i t  is noteworthy that the 
function and its first two derivatives differ by less than 0.5 yo from the best values 
obtained by Howarth (1935) and listed by Schlichting (1960). 

With the function $0, it is then possible to solve simultaneously for corre- 
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sponding first approximations to the mean temperature field To. Taken from the 
full equation (23), the approximate equation is 

Tb(1, + Pr $(I) Tkl) = 0, (36) 

subject to To(o(0) = 0, To(, + 1 as 7 + co. (37) 

The solution to this system is precisely the temperature field for the Hiemenz 
flow when the wall and the far flow have constant temperatures. Solutions were 
obtained for three Prandtl numbers, and the temperature profiles are shown in 
figure 3. For purpose of comparison the function $&) characterizing the undis- 
torted tangential velocity profile is also included. 

0 1 2 3 4 5 

9 

FIGURE 3. Temperature and velocity profiles before the addition of vorticity. 

4.1. First-harmonic components of vorticity and velocity 

Next, first approximations to the functions w1 and vl were obtained by simul- 
taneous solution of the following approximate versions of equations (25) and (26) 

- v’;o + + Vl(1) = 9 W1(1), 

4Cl) + (Al) w 1 d ’  - 94 W1) = 0, 

(38) 

(39) 
with the boundary conditions 

vl(l) = viCl) = 0 a t  7 = 0, 

The second set of boundary conditions simply means that wl(l) must be a bounded 
function at large 9.  The approximate equations imply (i) negligible interaction 

and viCl), t&,etc. + 0 as 7 -+ 00. (40) 
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effects from higher harmonics and (ii) negligible coupling between the vl - w1 
system and ul. The latter supposition is not justified a priori and was actually 
forced on the calculation by shortage of computer capacity. Only after a first 
approximation for u1 was in hand was it possible to assess the importance of the 
neglected coupling. The results below will verify that the coupling is indeed weak. 

It is furthermore to be noted that wl(d, though apparently independent of 
is actually coupled to the latter through the boundary conditions. There are 

no explicit boundary conditions on the vorticity but its initial value and slope 
must be chosen to satisfy the conditions of boundedness on To see how this 
occurs one need only examine the general solution for It is 

If ql) is to be bounded, the integral multiplying the positive exponential must 
vanish at least as strongly as e-tq. If the integral is to vanish at all, its integrand 
must change sign at least once. The factor e-fq does not change sign so w l o  must. 
Now wl(l) is a linear combination of two independent functions (discussed in Q 3) 

@1(d = ca W l a  + cb "lb, 

and neither of these functions changes sign in the interval 0 < 7 < 00. Thus the 
required behaviour for wl(l) can only be achieved by assigning values to c, and cb  

such that wl(l) changes sign and, when multiplied by e-811, gives an integral which 
vanishes sufficiently rapidly. For one thing, this would obviously require that 
W , ( ~ ) ( O )  and w;(d(O) have different signs. 

Since equation (39) is linear and homogeneous there must be an arbitrary 
constant factor associated with its solution. This factor was adjusted so that the 
maximum magnitude of vl(d = 1 (on the machine scale). Hence the control of the 
absolute value of this maximum is left to the parameter A .  Thus the physical 
significance that can be attached to A is that it  represents the maximum magni- 
tude attained by the amplitude of the imposed sinusoidal velocity variation, 
i.e. the q ( 7 )  introduced at the beginning of 0 2.2. 

The solutions achieved for vl(d and wl(l) are shown in figure 4. They indicate 
that between 7 = 12 and the edge of the classical boundary layer (7 21 2-4) wl(d is 
amplified by a factor of 10. The amplification ratio for ql) is about 15. Figure 5 
shows how the ratio r = lwl(dl /[ V,(l)l = I W ~ ( ~ I / $ ( ~  varies with 7 between 7 = 12 and 
the boundary. This ratio, which might be likened to a longitudinal turbulence 
intensity, undergoes a hundredfold amplification over the distance of five 
classical-boundary-layer widths. The fact that r exceeds unity means that 
locally the flow pattern may differ drastically from the Hiemenz flow which 
nevertheless continues to approximate the average flow pattern. 

Also displayed in figure 4 are the functions ul(d and w ~ ( ~ .  The former is obtained 
by solving an approximate version of equation (24) 

40 + $(l) 4 1 )  - ( 2 $ h  + 8)  Ul(d = $:l) %l), (41) 

subject to ~ ~ ( ~ ( 0 )  = 0, and ulC1) + 0 as 7 + 00. (42) 
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1.2 

0.8 

0.4 - 
c 

3 

;1" - - 0  

f 

I - 
- 
- =! 
3 

- 0.4 

- 0.8 

- 1.2 
FIGURE 4. First approximations to the fist-harmonic components 

of vorticity and velocity, k, = Q. 

71 

FIGURE 5. Relative intensity amplification of the fist-harmonic 
component of normal velocity, T = ~wl(l,~/[Vo(l~~. 
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The function 4;) vl(l) was programmed on a variable function generator which 
simulates a function from ten straight line segments. The smallness of ul(l) com- 
pared to vl(o and wl(o is striking. The maximum value of It&)[, which was neg- 
lected in equation (38), is 0.076, occurring at 7 = 0 where [wl(l)l = 1.1. The 
estimated maximum error in the solutions for vl(l) and wl(l) due to the neglect of 
this term is about 5 yo. 

The function wl(l) is obtained by simple addition according to the algebraic 
relationship (19). Thus 

It is interesting to note that the large variations in the normal velocity com- 
ponent v which exist near the boundary are almost entirely compensated by the 
induced axial component w. The tangential component u is hardly affected. 

Wl(1) = - VU;Cl) - Ul(1). 

4.2. Second-harmonic components of vorticity and velocity 
The second-harmonic components v, and w2 owe their existence, so to speak, to 
the interaction between the first-harmonic components and the main flow. 
Consequently some approximate representation of this interaction must be 
retained in the governing equations if any solution is to be achieved. Another, 
purely mathematical, reason for the necessity of this lies in the earlier discussion 
of the asymptotic behaviour of the homogeneous version of equation (26). This 
equation has two bounded solutions only when k, < 1 and in the present case 
k, = +. The non-homogeneous equation, however, possesses a general solution 
which consists of these two complementary functions plus a particular integral. 
The latter effectively offsets the unbounded complementary function and makes 
possible a bounded solution for w, which also satisfies the requirements on v,. 

The approximate equations and boundary conditions taken as governing 

v;(* + 56 02(1) = g W2(l), 143) 

and 
(45) 

Again the function generator was used to generate a reasonable facsimile of the 
right member of (44). In  the computations the factor +A was simply controlled 
by a potentiometer setting so that the output voltages simulating the variables 
v , ( ~  and w , ( ~ )  were large enough to ensure accurate functioning of the various 
machine elements. The obvious linear dependence of v,(~) and wz(0 on A then 
permits a simple scaling for any value of A whatsoever. The solutions for w , ( ~ )  
and w,(d corresponding to A = 1 are given in figure 6. 

Also shown in figure 6 are the solutions for u20, obtained by solving 

40 + 4(l) 4 1 )  - Wil) + -Ig) UZ(l) = 4AW;l) VZ(1) + Vl(l) 4 0  - VU;(l) Ul(l)I ,  (46) 

U,(l)(O) = 0, U,(l)-+ 0 as 7 + w ,  (47) 

and the function %(l) = - V k l )  - U m .  (48) 

The function v,(~) within the bracket in the right member of (46) is normalized, 
i.e. as shown in figure 6 for A = 1. 
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It was alluded to earlier and now it is clearly evident that the entire group of 
second-harmonic components of the velocity and vorticity amplitudes is sub- 
stantially smaller, about one to two orders of magnitude, when A = 1, than the 
first harmonics. 

0.04 

- 0.02 

- 0.04 
FIUURE 6. First approximations to the second-harmonic components of vorticity and 

velocity, k,  = 4. Magnitudes correspond to A = 1. 

4.3. Distortion of the mean velocity boundary layer 
A second approximation to the function 4, i.e. q5(2), which shows, to first approxi- 
mation, the distorting influence of the added vorticity on the mean flow, was 
obtained by solving 

#& + $42) $;z) - @) + 1 = A 2 4 d r ) ,  (49) 
# ( d o )  = d;2)(0) = 0, and 9;2, -+ 1 a5 7 -+ m, (50)  

where 4 0  = 4 0  + B ( U l 0  V d ’ .  (51) 

It should be noted that, for the range of A considered below, the contribution of 
the second harmonics to the function N(d amounted to less than 5 % of M(0 and 
so was not included. Figure 7 shows the function 95(2) and its first two derivatives 
for several values of A .  When A = 0, of course, &) = &. The distortion is quite 
small for values of A < 3. In  particular, when A = 3, the increase in the mean 
shear rate at the wall, i.e. &!.)(O), is only 3-65 yo. Also inserted in figure 7 is a plot 
of the function M(, as it was generated by the variable function generator. 

Figure 8 is a qualitative portrayal of the structure of the flow field near the 
boundary. No attempt has been made to duplicate the true relative scales in the 
profiles shown, but an idea is given of the periodic, cellular structure of the flow 
within the boundary layer. Obviously the particle paths are complex and it 
might be argued that the term ‘boundary layer’ has questionable significance in 
such a situation. The average flow pattern, however, is still characterized by a 
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FIGURE 7. Approximate distortion of the mean flow field as a function of the amplitude 
parameter. Mo,  represents approximately the distorting influence of added vorticity on 
the mean flow. 

~~ 

FIGURE 8. Qualitative representation of the flow pattern near the boundary. 
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definite boundary layer; and even locally the tangential-velocity profile, which 
differs little from the corresponding average profile q5’(7), defines a layer thickness 
which is practically constant for all values of z or g. 

0.2 

0.1 

0 
e 
- - 

m- - 0.1 

- 0.2 

- 0-3 
FIGURE 9. First approximations to the first harmonic components of the 

temperature function, k ,  = 8. 

FIGURE 10. First approximations to the second harmonic components of the temperature 
function, k, = $. Magnitudes correspond to A = 1. 

4.4. Distortion of the mean temperature jield 

The f is t -  and second-harmonic components of the temperature distribution were 
calculated to first approximation from the following differential equations and 
boundary conditions : 

G1) + Pr 941) O h  - 3 el(,) = Pr %l) fl1(1), (52) 

01(1)(0) = 0, and 01(1) + 0 as 7 -+ CQ, (53) 

+ (fll(1) O l d ’  + %(l) Ol(1) + 2%) O1(1)1, (54) 

Oz(l)(0) = 0, and 02(d-+ 0 as 7 -+a. (55) 

+ Pr 541) O;(l) - Y- O m  = *A Pr r2Tlkl) %1) 

Here again, it is the normalized w2(d (figure 6 )  which appears within the bracket 
of the right member of equation (54). The solutions and O,,, are depicted in 
figures 9 and 10 respectively for Pr = 0.7, 7.0, and 100. 

34 Fluid Mech. 21 
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At this point it remains only to calculate a second approximation to the 
function To, i.e. To,,, which exposes to first approximation the distorting iduence 
of the added vorticity on the mean temperature field. The pertinent differential 
equation and boundary conditions are 

where 

1 .o 

0.8 

0.6 
Ca 

.I 
h 

‘ 0.4 

- - N 

0.2 

0 1 3 4 5 

FIGURE 11. Distortion of the mean temperature field as a function of the amplitude 
parameter, Pr = 0-70. N(l, represents approxhately the distorting influence of added 
vorticity on the mean temperature field. 

Here, as in the case of M,,), the absence of second harmonics in the function N,,, 
indicates that, for the range of A considered, their contribution was negligible 
considering the overall computational precision maintained in the calculation. 
The functions To(,) are shown for a few values of A in figures 11, 12 and 13 (in the 
case A = 0, To(2) = To(g). In  all three cases the plots of N& as generated in the 
computer are inserted. 

Table 1 summarizes the increments effected in the wall gradients of velocity 
(shear rate) and temperature (heat-transfer rate) for the four boundary layers 
treated. In  each case, a quadratic dependence of the increments on A is dis- 
cernible. This is to be expected in the behaviour of equation (56), which is linear, 
but it is interesting that it also holds for the non-linear equation (49). Comparison 
of the increments in the case A = 2 reveals that the temperature boundary layer 
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" 0  0.5 1 .o 1.5 2.0 2.5 3.0 3.5 

71 

FIGURE 12. Distortion of the mean temperature field as a function 
of the amplitude parameter, Pr = 7.0. 
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FIGURE 13. Distortion of the mean temperature field as a function 

of the amplitude parameter, Pr = 100. 
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for Pr = 0.7 is about 10 times more sensitive than the velocity boundary layer 
while the temperature boundary layers for Pr = 7.0 and 100 are nearly 16 times 
and four times more sensitive, respectively. 

4.5. Reasons for the diflerence in sensitivity 
The results presented in Table 1 clearly establish a significant difference between 
the sensitivity of the momentum boundary layer and that of thermal boundary 
layers of comparable thickness. Possible reasons for this difference were discussed 
in the previous paper by Sutera et al. It seems appropriate to summarize briefly 
these reasons here. 

W''(0) 
A $''(O) ( % I  

0 1.237 
- 0.5 - 

1.0 1.242 +0-40 
2.0 1.258 + 1.70 

3.0 1.282 +3.65 
- 2-5 - 

Pr = 0.70 
& 

AT@) 
T m  (Yo)  
0.510 - 
0.516 + 1-18 
0.532 + 4.31 
0.595 +16*7 
0.641 +25.7 
0.703 +37.8 

Pr = 7.0  Pr = 100 

AT,") 
% ( O )  (%) 
1.225 - 
1.250 +2.04 
1.312 + 7.1 
1.555 +26.9 
1.716 +40-0 

AT@) 
(Yo)  

3.122 - 
3.144 +0.70 
8.185 +2.01 
3.350 +7.37 

TABLE 1. Summary of increments effected in mean values of shear rate 
and temperature gradient 

First, it  may be noted that the function M,,), which controls the distortion 
provoked in the mean velocity field and displayed in figure 6, is truly a small 
quantity next to unity. It is small because u , (~  and u;(,), which figure prominently 
in the formation of M(,), are both very small. The term unity in the basic Hiemenz 
equation stems from the pressure gradient in the original boundary-layer 
equations. If A2M(, is thought of as an additional 7-dependent increment to this 
pressure gradient, then, for A 2: 1, the increment is only 1 %. For A = 3, it  is 
about 10 yo, and perceptible changes begin to appear. 

Examination of the functions N(,) shows that they are substantially larger than 
M&; the smallest of the three, corresponding to Pr = 0.7, has maximum values 
more than twice those of M,,). The other two, it can definitely be said, are of 
order unity. These functions are larger than M(,) simply because the functions 8,(,) 
and 8;(,) in the three cases are consistently and substantially greater than u,(~) 
and u;(d respectively. Since the principal contributors in the functions M(l) and 
N,,, are the terms (u,(~) q(,))' and (81(1)v1(1))', respectively, the influence of this 
circumstance is obvious. 

Last, but not least, recognition must be given to the fact that, in one case, a 
third-order non-linear equation is being altered by the addition of a term, while, 
in the other case, it  is a second-order linear equation, initially homogeneous. 
As far as the latter is concerned, i t  is perfectly correct to say that the change 
effected in the final solution is precisely the particular integral of the subsequently 
non-homogeneous equation. In  the former case, no such clear-cut relationship 
between the solution and the added term exists. Another property of the non- 
linear equation believed relevant to a discussion of its sensitivity is the highly 
restrictive nature of the boundary conditions at  the wall. The function q5c2) and its 
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first derivative must both vanish at T,I = 0, and, in addition, the fact that M,,(O) = 0 
effectively requires that @&(O) = - 1. Thus a distorting influence such as the 
added vorticity can affect the function &, near T,I = 0 only through its second, 
fourth and higher derivatives. 

4.6. Prandtl-number effect 

As previously reported the thermal boundary layer in a fluid with Pr = 7.0 is 
considerably more sensitive than that in the fluid with Pr = 0.7. This was 
corroborated by the present results. The calculation for the case Pr = 100 shows, 
however, that the sensitivity must attain a maximum for some Prandtl number 
and then diminish as Pr is increased further. 

The explanation of this is simply that there are two mechanisms through which 
the Prandtl number affects the disturbed thermal boundary layer and these 
oppose one another. The first effect is to make the boundary layer thinner. This 
is brought about by the coefficient Pr in the left member of the differential 
equation (56). As this coefficient, and consequently the term it multiplies, 
become large, the curvature in the temperature profile can and does become 
correspondingly large locally. The result is a profile with rapidly decreasing slope 
and narrow in extent. The second, opposing effect is due to the coefficient Pr 
in the distorting function &. This coefficient magnifies the distorting influence 
and tends to provoke greater changes in the overall temperature profile. At some 
point, however, the profile becomes so narrow that the peaks of iV(l) occur outside 
it, and the effectiveness of N,, diminishes. That this should happen can be 
predicted by a simple physical argument. In  the limit of infinite Prandtl number 
the energy transfer takes place in a zone next to the wall which is infinitesimally 
thin, and no distortions in the velocity profile short of violating the conditions 
of no slip and no through-flow can have any effect on it whatsoever. 

4.7. Comparison with the neutral-scale case 

The computations reported in the preceding paper were performed for added 
vorticity of neutral scale and a single value of the amplitude parameter, viz. 
A = 8. To summarize the effects obtained, 

A$”(O) = +4*85 %, 
ATA(0) = + 26-0 yo for Pr = 0.74, 

and ATA(0) = + 70.0 % for Pr = 7.0. 

In  the present case a value of A slightly greater than three produces a comparable 
rise in the wall-shear rate, while A = 2.5 gives a 26 yo increase in the heat transfer 
rate for Pr = 0.70. It is estimated that a value of A = 3-5 would increase the heat 
transfer rate by 70 yo for Pr = 7.0. 

This all indicates that the larger-scale vorticity is more effective in producing 
distortions in the boundary layers, both dynamic and thermal, than is the 
neutral. A comparison of the solutions for the first harmonic components of the 
velocity and vorticity amplitudes in the two cases (neutral and 1.5 times neutral) 
indicates the reason for the difference. The larger-scale quantities, particularly 
v1 and wl ,  undergo amplification and attain their peak values much closer to the 
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boundary, in fact within the mean boundary layer described by 4. In  the neutral- 
scale case, vl and w1 approach the boundary layer with unvarying magnitudes and 
then decrease monotonously. The former begins its decline nearly two boundary- 
layer widths from the wall. As a consequence, the various cross products which 
make up the distorting functions are considerably reduced, and a much larger 
amplitude factor is needed to produce a change of a given magnitude. 

5. Conclusions 
A mathematical model introduced in an earlier paper (Sutera et al. 1963) has 

demonstrated the possibility of vorticity amplification by stretching in quasi 
two-dimensional stagnation flow. According to the model, amplification can 
occur if the vorticity scale is larger than a certain neutral scale, which is con- 
vected towards the boundary layer with no net amplification or attenuation. 
Smaller-scale vorticity only attenuates as it approaches the boundary layer. 

Previously reported calculations revealed that the mean thermal boundary 
layer was much more sensitive than the mean momentum boundary layer to the 
presence of neutral-scale vorticity. In  the present work the main flow transports 
vorticity of scale 1.5 times the neutral. This vorticity is amplified to a maximum 
value near the edge of the mean flow boundary layer and is generally more 
effective than the neutral scale in causing distortions in the flow and energy 
transport near the boundary. The substantially greater sensitivity of the thermal 
boundary layer is again demonstrated but it is shown that this sensitivity 
gradually decreases as the Prandtl number increases. Numerical results have 
been obtained for Prandtl numbers 0.70, 7.0 and 100. The increase in the heat- 
transfer rate a t  the boundary due to the addition of vorticity is greatest in the 
second case and least for the third case. The increases in heat-transfer rate at the 
boundary range from 4 to 16 times the concomitant increase in wall shear rate. 

The work described in this paper constitutes part of a co-operative research 
programme on heat transfer in unsteady flows of the Aeronautical Research 
Laboratories, Office of Aerospace Research of the U.S. Air Force, under the 
technical supervision of Dr M. Scherberg. The financial support from this source 
as well as additional support from a National Science Foundation grant are 
gratefully acknowledged. 
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